
Stat 587: Key points and formulae Week 9

Linear regression:
Evaluate relationships between two continuous variables
Three major uses

Describe / test relationships
Predict Y at new X, also (sometimes) predict X at new Y
Test hypotheses about predictions

Will focus on Describe and Predict

Requires a model for how Y depends on X
Simplest, but uninteresting model, Yi = µ+ εi: constant mean
Simplest non-trivial model: Yi = β0 + β1 Xi + εi

Simple linear regression model
Book writes as predicted (aka expected) value of Y given X: µ(Y | X) = β0 + β1X
β0 and β1 are just symbols, could also write a line as Y = a+ bX or Y = mX + b.
Statisticians prefer β’s because extends easily to 2, 3, or many different X variables

Interpretation of coefficients:
β0: intercept, predicted Y when X = 0, same as estimated mean of Y when X = 0
β1: slope, estimated change in mean Y when X increases by 1
peanuts: increase by 1 unit is not interpretable (data from 99.65 to 99.9)

More general: increase X by ∆X, on average Y increases by ∆X × β1
meat: X is log hours.

Increasing X by log 2 ≈ 0.693 is a doubling of hours (1 → 2 or 3 → 6).
So log 2× β1 = 0.693× β1 is increase in mean Y when double the hours.

Estimating β0 and β1:
Concept: find β0 and β1 so that predicted values are close to all observed values
Define closeness by sum of squared residuals = SSE,

find β̂0 and β̂1 that minimize SSE

β̂1 =
Σ(Xi −X)Yi

Σ(Xi −X)2

β̂0 = Y − β̂1X

History:
Procedure often called “least squares” or ordinary least squares (OLS)

Credited to Gauss (1795 or 1809) or Legendre (1805)
Called regression because of Galton 1896

“Regression to mediocrity”: now called heritability,
but regression has stuck as the name for fitting Galton’s line
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Connection to linear trend contrast:
Linear regression estimated slope, fit to observations:

β̂1 =
Σ(Xi −X)Yi

Σ(Xi −X)2

Data in groups, calculate Y i. for each unique X
Fit regression to group means (Xi, Y i.)

β̂1 =
Σ(Xi −X)Y i.

Σ(Xi −X)2
= Σ

(
Xi −X

Σ(Xi −X)2

)
Y i.

Linear trend contrast is the numerator of the slope estimate:

β̂1 = Σ(Xi −X)Y i.

can get the slope as a contrast (by including the denominator)
test of slope = 0 and test of linear trend contrast = 0 have the same numerator

have different se’s because s2 estimated differently
almost always very, very similar

Estimating error variance, s2:
s is the sd of observations around the best fitting line
Assume straight line fits the data
residual = Yi − Ŷi, where Ŷi = β̂0 + β̂1 Xi

mean square error = s2 = Σ (Yi − Ŷi)2/error df
error df: N − 2. Why 2? need to estimate 2 parameters, β̂0 and β̂1

Precision of estimates:
As expected, more obs increases precision but two other features
Slope:

se β̂1 = s

√
1

(N − 1)s2X

s2X is variance in X values. more spread out X’s increase precision
Intercept:

se β̂0 = s

√
1

N
+

X
2

(N − 1)s2X

larger X decreases precision
If X’s close to 0, intercept more precise
If X’s a long way from X = 0, intercept less precise

Inference: (very familiar once have est. and se)
(β̂ − β)/se β̂ has a T distribution with N − 2 df
You know how to construct tests and confidence intervals for individual parameters.
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Useful tests:
β0 = 0: not often useful
β1 = 0: does mean Y change with X? Ho: no linear relationship

T test using β̂1
Test Ho: β1 = 0 using model comparison. Two models:

full: Yi = β0 + β1 Xi + εi
reduced: Yi = β0 + εi (same as equal means model)
Reject Ho when full fits much better than reduced, i.e., slope 6= 0
Can compute F statistic directly, or use an ANOVA table
Same p-value as T test, and F = t2, since hypothesis has 1 df

Predictions at new X0:
Two different quantities

Predicting mean Y at a specified X
Predicting individual Y for one observation at a specified X
Same prediction, different uncertainty

Predicting mean Y : confidence interval for a predicted Y
If β0, β1 known, then prediction = β0 + β1 X0

No uncertainty! because β0, β1 known
Estimate: Ŷ0 = β̂0 + β̂1 X0

Uncertain because of uncertainty in β0, β1

se Ŷ0 = s

√
1

N
+

(X0 −X)2

(N − 1)s2X

se formula demonstrates:
1) se β̂0 = se Ŷ0 when X0 = 0
2) se Ŷ0 not constant. depends on X0

smallest se when X0 = X, increases as move away from X.

Predicting Y for one observation: prediction interval
If β0, β1 known, then prediction = β0 + β1 X0

This has uncertainty, because Y values are not on the line
Estimate Ŷpred = β̂0 + β̂1 X0

Has two sources of variability:
1) variability in the mean, se Ŷ0
2) variability around the line, se Y | Ŷ0

Add variances
1) has variance s2

(
1
N

+ (X0−X)2

(N−1)s2X

)
when doing SLR

2) has variance s2

For SLR:

se Ŷpred = s

√
1 +

1

N
+

(X0 −X)2

(N − 1)s2X
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In general (need se Ŷ0 from computer):

se Ŷpred =

√(
se Ŷ0

)2
+ s2

Calibration:
When does meat pH drop to 6.0?

Easy if Y = time, X = pH, X0 = 6.0
Choice of Y and X matters.

All error variation in Y direction
X assumed known without error

Meat: time known exactly (set by experimenter) so X = time
Need to predict X0 for specified Y0
Known as the “calibration” problem

because calibration curves are a common application
X = known concentration, Y = measured signal,
want to predict concentration given a measurement

Prediction:

X̂0 =
Y0 − β̂0
β̂1

Precision: Approx. se X̂0 = (se Ŷobs)/β̂1 ≈ s/β̂1
Confidence intervals and better se estimates can be computed

But beyond this course.

How I choose which is X and which is Y for a regression:
Experimental study: X is the manipulated variable, no choice
Observational study: 3 approaches
X is the antecedant concept; Y is the consequent concept
X is the more precisely measured variable
What do you want to predict? That’s Y

Assumptions:
Usual 3: independence, equal variances, normality
Plus: have correct model for the mean, “no lack of fit”.
Importance: depends on goal

Assumption estimates tests prediction interval
linearity *** *** ***
independence ok *** ***
equal variance ok * ***
normality ok ok ***
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Diagnoses:
plot of residuals vs predicted values

usual: no outliers, no trumpet
new: smile or frown ⇒ lack of fit

formal tests of lack of fit
Fit a more complicated model (e.g., Yi = β0 + β1 Xi + β2 X

2
i + εi)

When have > 1 obs at same X’s, can fit regression or ANOVA
ANOVA lack of fit test

ANOVA (different mean for each unique X) always fits
regression may or may not fit
Construct ANOVA table with full = ANOVA, reduced = regression
Requires multiple observations with same X values (so can fit ANOVA)
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