Linear regression:

Evaluate relationships between two continuous variables

Three major uses

Describe / test relationships

Predict Y at new X, also (sometimes) predict X at new Y

Test hypotheses about predictions

Will focus on Describe and Predict

Requires a model for how Y depends on X

Simplest, but uninteresting model, $Y_i = \mu + \varepsilon_i$: constant mean

Simplest non-trivial model: $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$

Simple linear regression model

Book writes as predicted (aka expected) value of Y given X: $\mu(Y | X) = \beta_0 + \beta_1 X$ β_0 and β_1 are just symbols, could also write a line as $Y = a + bX$ or $Y = m X + b$. Statisticians prefer β 's because extends easily to 2, 3, or many different X variables

Interpretation of coefficients:

 β_0 : intercept, predicted Y when $X = 0$, same as estimated mean of Y when $X = 0$ β_1 : slope, estimated change in mean Y when X increases by 1

peanuts: increase by 1 unit is not interpretable (data from 99.65 to 99.9)

More general: increase X by ΔX , on average Y increases by $\Delta X \times \beta_1$ meat: X is log hours.

Increasing X by $log 2 \approx 0.693$ is a doubling of hours $(1 \rightarrow 2 \text{ or } 3 \rightarrow 6)$. So $\log 2 \times \beta_1 = 0.693 \times \beta_1$ is increase in mean Y when double the hours.

Estimating β_0 and β_1 :

Concept: find β_0 and β_1 so that predicted values are close to all observed values Define closeness by sum of squared residuals $=$ SSE,

find $\hat{\beta}_0$ and $\hat{\beta}_1$ that minimize SSE

$$
\hat{\beta}_1 = \frac{\Sigma (X_i - \overline{X}) Y_i}{\Sigma (X_i - \overline{X})^2} \n\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{X}
$$

History:

Procedure often called "least squares" or ordinary least squares (OLS)

Credited to Gauss (1795 or 1809) or Legendre (1805)

Called regression because of Galton 1896

"Regression to mediocrity": now called heritability,

but regression has stuck as the name for fitting Galton's line

Connection to linear trend contrast:

Linear regression estimated slope, fit to observations:

$$
\hat{\beta}_1 = \frac{\Sigma (X_i - \overline{X}) Y_i}{\Sigma (X_i - \overline{X})^2}
$$

Data in groups, calculate \overline{Y}_i for each unique X Fit regression to group means (X_i, \overline{Y}_i)

$$
\hat{\beta}_1 = \frac{\Sigma (X_i - \overline{X}) \overline{Y}_{i.}}{\Sigma (X_i - \overline{X})^2} = \Sigma \left(\frac{X_i - \overline{X}}{\Sigma (X_i - \overline{X})^2} \right) \overline{Y}_{i.}
$$

Linear trend contrast is the numerator of the slope estimate:

$$
\hat{\beta}_1 = \Sigma (X_i - \overline{X}) \overline{Y}_{i.}
$$

can get the slope as a contrast (by including the denominator)

test of slope $= 0$ and test of linear trend contrast $= 0$ have the same numerator

have different se's because s^2 estimated differently

almost always very, very similar

Estimating error variance, s^2 :

s is the sd of observations around the best fitting line Assume straight line fits the data residual = $Y_i - \hat{Y}_i$, where $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 X_i$ mean square error = $s^2 = \sum (Y_i - \hat{Y}_i)^2$ /error df error df: $N-2$. Why 2? need to estimate 2 parameters, $\hat{\beta}_0$ and $\hat{\beta}_1$

Precision of estimates:

As expected, more obs increases precision but two other features Slope:

$$
se \hat{\beta}_1 = s \sqrt{\frac{1}{(N-1)s_X^2}}
$$

 s_X^2 is variance in X values. more spread out X's increase precision Intercept:

se
$$
\hat{\beta}_0 = s \sqrt{\frac{1}{N} + \frac{\overline{X}^2}{(N-1)s_X^2}}
$$

larger \overline{X} decreases precision

If X 's close to 0, intercept more precise

If X's a long way from $X = 0$, intercept less precise

Inference: (very familiar once have est. and se)

 $(\hat{\beta} - \beta)/\text{se }\hat{\beta}$ has a T distribution with $N - 2$ df

You know how to construct tests and confidence intervals for individual parameters.

Useful tests: $\beta_0 = 0$: not often useful $\beta_1 = 0$: does mean Y change with X? Ho: no linear relationship T test using $\hat{\beta}_1$ Test Ho: $\beta_1 = 0$ using model comparison. Two models: full: $Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$ reduced: $Y_i = \beta_0 + \varepsilon_i$ (same as equal means model) Reject Ho when full fits much better than reduced, i.e., slope $\neq 0$ Can compute F statistic directly, or use an ANOVA table Same p-value as T test, and $F = t^2$, since hypothesis has 1 df

Predictions at new X_0 :

Two different quantities

Predicting mean Y at a specified X

Predicting individual Y for one observation at a specified X Same prediction, different uncertainty

Predicting mean Y : confidence interval for a predicted Y

If β_0 , β_1 known, then prediction = $\beta_0 + \beta_1 X_0$ No uncertainty! because β_0 , β_1 known

Estimate: $\hat{Y}_0 = \hat{\beta}_0 + \hat{\beta}_1 X_0$

Uncertain because of uncertainty in β_0 , β_1

se
$$
\hat{Y}_0 = s \sqrt{\frac{1}{N} + \frac{(X_0 - \overline{X})^2}{(N-1)s_X^2}}
$$

se formula demonstrates:

1) se $\hat{\beta}_0 =$ se \hat{Y}_0 when $X_0 = 0$

2) se \hat{Y}_0 not constant. depends on X_0

smallest se when $X_0 = \overline{X}$, increases as move away from \overline{X} .

Predicting Y for one observation: prediction interval

If β_0 , β_1 known, then prediction = $\beta_0 + \beta_1 X_0$

This has uncertainty, because Y values are not on the line Estimate $\hat{Y}_{pred} = \hat{\beta}_0 + \hat{\beta}_1 X_0$

Has two sources of variability:

1) variability in the mean, se \hat{Y}_0

2) variability around the line, se $Y | \hat{Y}_0$

Add variances

1) has variance $s^2 \left(\frac{1}{N} + \frac{(X_0 - \overline{X})^2}{(N-1)s_X^2} \right)$ $\overline{(N-1)s_X^2}$ when doing SLR 2) has variance s^2

For SLR:

se
$$
\hat{Y}_{pred} = s\sqrt{1 + \frac{1}{N} + \frac{(X_0 - \overline{X})^2}{(N - 1)s_X^2}}
$$

In general (need se \hat{Y}_0 from computer):

se
$$
\hat{Y}_{pred} = \sqrt{\left(\text{se } \hat{Y}_0\right)^2 + s^2}
$$

Calibration:

When does meat pH drop to 6.0? Easy if $Y =$ time, $X =$ pH, $X_0 = 6.0$ Choice of Y and X matters. All error variation in Y direction X assumed known without error Meat: time known exactly (set by experimenter) so $X = \text{time}$ Need to predict X_0 for specified Y_0 Known as the "calibration" problem

because calibration curves are a common application

 $X =$ known concentration, $Y =$ measured signal,

want to predict concentration given a measurement Prediction:

$$
\hat{X}_0 = \frac{Y_0 - \hat{\beta}_0}{\hat{\beta}_1}
$$

Precision: Approx. se $\hat{X}_0 = (\text{se } \hat{Y}_{obs})/\hat{\beta}_1 \approx s/\hat{\beta}_1$

Confidence intervals and better se estimates can be computed But beyond this course.

How I choose which is X and which is Y for a regression:

Experimental study: X is the manipulated variable, no choice Observational study: 3 approaches

 X is the antecedant concept; Y is the consequent concept

X is the more precisely measured variable

What do you want to predict? That's Y

Assumptions:

Usual 3: independence, equal variances, normality Plus: have correct model for the mean, "no lack of fit". Importance: depends on goal

Diagnoses:

plot of residuals vs predicted values

usual: no outliers, no trumpet

new: smile or frown \Rightarrow lack of fit

formal tests of lack of fit

Fit a more complicated model (e.g., $Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \varepsilon_i$)

When have > 1 obs at same X's, can fit regression or ANOVA

ANOVA lack of fit test

ANOVA (different mean for each unique X) always fits

regression may or may not fit

Construct ANOVA table with full $= ANOVA$, reduced $=$ regression

Requires multiple observations with same X values (so can fit ANOVA)